RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2023, том 14, номер 2, страницы 24–57 (Mi emj468)

Caffarelli–Kohn–Nirenberg inequalities for Besov and Triebel–Lizorkin-type spaces

D. Drihem

Department of Mathematics, Laboratory of Functional Analysis and Geometry of Spaces, M'sila University, M'sila, 28000, M’sila, Algeria

Аннотация: We present some Caffarelli–Kohn–Nirenberg-type inequalities for Herz-type Besov–Triebel–Lizorkin spaces, Besov–Morrey and Triebel–Lizorkin–Morrey spaces. More precisely, we investigate the inequalities
$$ ||f||_{\dot{k}_{v,\sigma}^{\alpha_1,r}}\leqslant c||f||_{\dot{K}_{u}^{\alpha_2,\delta}}^{1-\theta}||f||_{\dot{K}_{p}^{\alpha_3,\delta_1}A_\beta^s}^\theta $$
and
$$ ||f||_{\mathcal{E}_{p,2,u}^\sigma}\leqslant c||f||_{M_\mu^\delta}^{1-\theta}||f||_{\mathcal{N}_{q,\beta,v}}^\theta, $$
with some appropriate assumptions on the parameters, where $\dot{k}_{v,\sigma}^{\alpha_1,r}$ are the Herz-type Bessel potential spaces, which are just the Sobolev spaces if $\alpha_1=0,1<r=v<\infty$ and $\sigma\in\mathbb{N}_0$, and $\dot{K}_p^{\alpha_3,\delta_1}A_\beta^s$ are Besov or Triebel–Lizorkin spaces if $\alpha_3=0$ and $\delta-1=p$. The usual Littlewood–Paley technique, Sobolev and Franke embeddings are the main tools of this paper. Some remarks on Hardy-Sobolev inequalities are given.

Ключевые слова и фразы: Besov spaces, Triebel–Lizorkin spaces, Morrey spaces, Herz spaces, Caffarelli–Kohn–Nirenberg inequalities.

MSC: 46B70, 46E35

Поступила в редакцию: 09.05.2020
Исправленный вариант: 19.10.2022

Язык публикации: английский

DOI: 10.32523/2077-9879-2023-14-2-24-57



© МИАН, 2024