RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2023, том 14, номер 3, страницы 75–111 (Mi emj478)

New $2$-microlocal Besov and Triebel–Lizorkin spaces via the Litllewood–Paley decomposition

K. Saka

Department of Mathematics, Akita University, 010-8502 Akita, Japan

Аннотация: In this paper we introduce and investigate new 2-microlocal Besov and Triebel–Lizorkin spaces via the Littlewood–Paley decomposition. We establish characterizations of these function spaces by the $\varphi$-transform, the atomic and molecular decomposition and the wavelet decomposition. As applications we prove boundedness of the the Calderón–Zygmund operators and the pseudo-differential operators on the function spaces. Moreover, we give characterizations via oscillations and differences.

Ключевые слова и фразы: wavelet, Besov space, Triebel–Lizorkin space, pseudo-differential operator, Calderón–Zygmund operator, atomic and molecular decomposition, $2$-microlocal space, $\varphi$-transform.

MSC: 42B35, 42B20, 42B25, 42C40

Поступила в редакцию: 21.05.2021
Принята в печать: 16.03.2023

Язык публикации: английский

DOI: 10.32523/2077-9879-2023-14-3-75-111



© МИАН, 2025