RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2023, том 14, номер 4, страницы 92–99 (Mi emj486)

Maps between Fréchet algebras which strongly preserves distance one

A. Zivari-Kazempour

Department of Mathematics, Ayatollah Borujerdi University, Borujerd, Iran

Аннотация: We prove that if $T : X \to Y$ is a $2$-isometry between real linear $2$-normed spaces, then $T$ is affine whenever $Y$ is strictly convex. Also under some conditions we show that every surjective mapping $T : A \to B$ between real Fréchet algebras, which strongly preserves distance one, is affine.

Ключевые слова и фразы: Mazur–Ulam Theorem, Fréchet algebras, strictly convex, isometry.

MSC: Primary 46H40; Secondary 47A10

Поступила в редакцию: 13.02.2023

Язык публикации: английский

DOI: 10.32523/2077-9879-2023-14-4-92-99



© МИАН, 2025