RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2024, том 15, номер 2, страницы 8–32 (Mi emj498)

Эта публикация цитируется в 1 статье

Estimates of $M$–term approximations of functions of several variables in the Lorentz space by a constructive method

G. Akishevabc

a Department of Fundamental and Applied Mathematics, M.V. Lomonosov Moscow State University, Kazakhstan Branch, 11 Kazhymukan St, 010010, Astana, Republic of Kazakhstan
b Institute of mathematics and mathematical modeling, 125 Pushkin St, 050010, Almaty, Republic of Kazakhstan
c Institute of Natural Sciences and Mathematics, Ural Federal University, 4 Turgenov St., 620002, Yekaterinburg, Russian Federation

Аннотация: In the paper, the Lorentz space $L_{q,r}(\mathbb{T}^m)$ of periodic functions of several variables, the Nikol'skii–Besov class $S_{q,\tau,\theta}^{\overline{r}}$ and the associated class $W_{q,r}^{a,b,\overline{r}}$ for $1<q$, $\tau<\infty$, $1\leqslant\theta\leqslant\infty$ are considered. Estimates are established for the best $M$-term trigonometric approximations of functions of the classes $W_{q,\tau_1}^{a,b,\overline{r}}$ and $S_{q,\tau_1,\theta}^{\overline{r}}B$ in the norm of the space $L_{p,\tau_2}(\mathbb{T}^m)$ for different relations between the parameters $q$, $\tau_1$, $p$, $\tau_2$, $a$, $\theta$. The proofs of the theorems are based on the constructive method developed by V.N. Temlyakov.

Ключевые слова и фразы: Lorentz space, Nikol'skii–Besov class, best $M$–term approximation, constructive method.

MSC: 41A10, 41A25, 42A05

Поступила в редакцию: 31.10.2021
Принята в печать: 24.01.2024

Язык публикации: английский

DOI: 10.32523/2077-9879-2024-15-2-08-32



© МИАН, 2024