Аннотация:
In this paper, we study the interpolation properties of anisotropic net spaces $N_{\overline{p},\overline{q}}(M)$,
where $\overline{p} = (p_1,\dots, p_n)$, $\overline{q} = (q_1,\dots, q_n)$. It is shown that, with respect to the multidimensional
interpolation method, the following equality holds
$$
(N_{\overline{p}_0,{\overline{q}_0}}(M), N_{\overline{p}_1,{\overline{q}_1}}(M))_{\overline{\theta},\overline{q}}=N_{\overline{p},\overline{q}}(M),\qquad \frac1{\overline{p}}=\frac{1-\overline{\theta}}{\overline{p}_0}+\frac{\overline{\theta}}{\overline{p}_1}.
$$
Ключевые слова и фразы:net spaces, anisotropic spaces, real interpolation method.