RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2010, том 1, номер 1, страницы 54–72 (Mi emj7)

Эта публикация цитируется в 6 статьях

On infinite differentiability of solutions of nonhomogeneous almost hypoelliptic equations

H. G. Ghazaryan, V. N. Margaryan

Department of mathematics and mathematical modelling, Russian–Armenian (Slavonic) State University, Yerevan, Armenia

Аннотация: A linear differential operator $P(D)$ with constant coefficients is called almost hypoelliptic if all derivatives $P^{(\nu)}(\xi)$ of the characteristic polynomial $P(\xi)$ can be estimated above via $P(\xi)$. In this paper it is proved that all solutions of the equation $P(D)u=f$ where $f$ and all its derivatives are square integrable with a certain exponential weight, which are square integrable with the same weight, are also such that all their derivatives are square integrable with this weight, if and only if the operator $P(D)$ is almost hypoelliptic.

Ключевые слова и фразы: hypoelliptic operator (polynomial), almost hypoelliptic operator (polynomial), weighted Sobolev spaces.

MSC: 12E10

Поступила в редакцию: 25.12.2009

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024