RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2012, том 3, номер 1, страницы 41–62 (Mi emj73)

Эта публикация цитируется в 3 статьях

On selection of infinitely differentiable solutions of a class of partially hypoelliptic equations

H. G. Ghazaryan

Department of mathematics and mathematical modelling, Russian-Armenian (Slavonic) State University, 123 Ovsep Emin St., 0051 Yerevan, Armenia

Аннотация: In this paper the existence of a constant $\kappa_0>0$ is proved such that all solutions of a class of regular partially hypoelliptic (with respect to the hyperplane $x''=(x_2,\dots,x_n)=0$ of the space $E^n$) equations $P(D)u=0$ in the strip $\Omega_\kappa=\{(x_1,x'')=(x_1,x_2,\dots,x_n)\in E^n;\, |x_1|<\kappa\}$ are infinitely differentiable when $\kappa\ge\kappa_0$ and $D^\alpha u\in L_2(\Omega_\kappa)$ for all multi-indices $\alpha=(0,\alpha'')=(0,\alpha_2,\dots,\alpha_n)$ in the Newton polyhedron of the operator $P(D)\cdot{}$.

Ключевые слова и фразы: regular (non-degenerate) operator (equation), partially hypoelliptic operator (equation), multi-anisotropic Sobolev spaces.

MSC: 12E10

Поступила в редакцию: 15.10.2011

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2025