RUS  ENG
Полная версия
ЖУРНАЛЫ // Eurasian Mathematical Journal // Архив

Eurasian Math. J., 2010, том 1, номер 1, страницы 73–110 (Mi emj8)

Эта публикация цитируется в 7 статьях

One and two weight estimates for one-sided operators in $L^{p(\cdot)}$ spaces

V. Kokilashvilia, A. Meskhia, M. Sarwarb

a A. Razmadze Mathematical Institute, Georgian Academy of Sciences, Tbilisi, Georgia
b Abdus Salam School of Mathematical Sciences, GC University University, New Muslim Town, Lahore, Pakistan

Аннотация: Various type weighted norm estimates for one-sided maximal functions and potentials are established in variable exponent Lebesgue spaces $L^{p(\cdot)}$. In particular, sufficient conditions (in some cases necessary and sufficient conditions) governing one and two weight inequalities for these operators are derived. Among other results generalizations of the Hardy–Littlewood, Fefferman–Stein and trace inequalities are given in $L^{p(\cdot)}$ spaces.

Ключевые слова и фразы: one-sided maximal functions, one-sided potentials, one-weight inequality, two-weight inequality, trace inequality.

MSC: 26A33, 42B25, 46E30

Поступила в редакцию: 18.09.2009

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024