RUS  ENG
Full version
JOURNALS // Diskretnaya Matematika // Archive

Diskr. Mat., 2017 Volume 29, Issue 1, Pages 17–26 (Mi dm1403)

This article is cited in 9 papers

Limit theorem for the size of an image of subset under compositions of random mappings

A. M. Zubkov, A. A. Serov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Abstract: Let $\mathcal{X_N}$ be a set consisting of $N$ elements and $F_1,F_2,\ldots$ be a sequence of random independent equiprobable mappings $\mathcal{X_N}\to\mathcal{X_N}$. For a subset $S_0\subset \mathcal{X_N}$, $|S_0|=n$, we consider a sequence of its images $S_t=F_t(\ldots F_2(F_1(S_0))\ldots)$, $t=1,2\ldots$ The conditions on $n$, $t$, $N\to\infty$ under which the distributions of image sizes $|S_t|$ are asymptotically connected with the standard normal distribution are presented.

Keywords: random equiprobable mappings, compositions of random mappings, asymptotic normality.

UDC: 519.212.2+519.214

Received: 14.07.2016

DOI: 10.4213/dm1403


 English version:
Discrete Mathematics and Applications, 2018, 28:2, 131–138

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025