RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb. (N.S.), 1969 Volume 79(121), Number 3(7), Pages 444–460 (Mi sm3598)

This article is cited in 8 papers

Sequential $\chi^2$ criteria

V. K. Zakharov, O. V. Sarmanov, B. A. Sevast'yanov


Abstract: Independent trials with $m$ outcomes are considered. Let the probability of the $j$th outcome be $p_j$ under the null hypothesis $H$ but be $\widetilde p_j$ under the alternative hypothesis $\widetilde H$, $j=1,2,\dots,m$. For testing the hypothesis $H$ samples with increasing size $n_1<n_2<\dots<n_r$ are formed. We denote the number of times that the $j$th outcome appears in the first $n_i$ trials by $\nu_{ij}$. The statistics $\chi_i^2$ are introduced by formula (1.2). The hypothesis $H$ is rejected if $\chi_i^2>x_i^*$ for all $i=1,2,\dots,r$, where $x_i^*$ is some critical value, and is accepted in the remaining cases. The limit, for $n_i\to\infty$, of the distribution of $\chi^2$ under the hypotheses $H$ and $\widetilde H$ is given in the paper. These are used for the computation of the errors of the first and second kind, $\alpha$ and $\beta$, according to formulas (1.4) and (1.5). These distributions are multivariate generalizations of the central and noncentral $\chi^2$-distributions.
Bibliography: 4 titles.

UDC: 519.2

MSC: 62H15, 62H10, 62L10, 62M02, 60Exx

Received: 09.01.1969


 English version:
Mathematics of the USSR-Sbornik, 1969, 8:3, 419–435

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025