RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2000 Volume 191, Number 2, Pages 132–148 (Mi sm455)

This article is cited in 4 papers

Embedding the weighted Sobolev space $W^l_p(\Omega;v)$ in the space $L_p(\Omega;\omega)$

L. K. Kusainova

Institute of Applied Mathematics National Academy of Sciences of Kazakhstan

Abstract: Several conditions on the weight functions $v$ and $\omega$ are obtained that guarantee the embedding inequality
$$ \|u\|_{L_p(\Omega;\omega)}\leqslant C\biggl[\biggl(\int_\Omega|\nabla_lu|^p\biggr)^{1/p}+\biggl(\int_\Omega|u|^pv\biggr)^{1/p}\biggr], \qquad 1<p<n/l. $$
Classes of weights $\omega$ and $v$ in which these conditions are both necessary and sufficient are described.

UDC: 517.518.23

MSC: 46E35

Received: 02.12.1997

DOI: 10.4213/sm455


 English version:
Sbornik: Mathematics, 2000, 191:2, 275–290

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025