RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2009 Volume 200, Number 11, Pages 3–14 (Mi sm7481)

This article is cited in 2 papers

Extrinsic geometric properties of the Rozendorn surface, an isometric immersion of the Lobachevskiǐ plane in $E^5$

Yu. A. Aminov

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine

Abstract: The lengths of the normal curvature vectors on the Rozendorn surface $F^2$ are shown to be uniformly bounded above on the whole of the surface. A regular three-dimensional submanifold $F^3$, $F^2\subset F^3 \subset E^5$, is constructed in the form of a regular leaf whose sectional curvatures in the two-dimensional directions tangent to $F^2$ are strictly negative and bounded away from zero.
Bibliography: 9 titles.

Keywords: ellipse of normal curvature, normal connection, sectional curvature.

UDC: 514.752.44

MSC: 53C42

Received: 05.11.2008 and 02.07.2009

DOI: 10.4213/sm7481


 English version:
Sbornik: Mathematics, 2009, 200:11, 1575–1586

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025