RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2004 Volume 195, Number 1, Pages 89–102 (Mi sm794)

This article is cited in 42 papers

New examples of Hamilton-minimal and minimal Lagrangian manifolds in $\mathbb C^n$ and $\mathbb C\mathrm P^n$

A. E. Mironov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: A new method is proposed for constructing Hamilton-minimal and minimal Lagrangian immersions and embeddings of manifolds in $\mathbb C^n$ and in $\mathbb C\mathrm P^n$. In particular, using this method it is possible to construct embeddings of manifolds such as the $(2n+1)$-dimensional generalized Klein bottle $\mathscr K^{2n+1}$, $S^{2n+1}\times S^1$, $\mathscr K^{2n+1}\times S^1$, $S^{2n+1}\times S^1\times S^1$, and others.

UDC: 514.76

MSC: Primary 53D12; Secondary 57N35, 57R17

Received: 15.01.2003

DOI: 10.4213/sm794


 English version:
Sbornik: Mathematics, 2004, 195:1, 85–96

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025