RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2004 Volume 195, Number 5, Pages 115–156 (Mi sm824)

This article is cited in 5 papers

On the additive cohomological equation and time change for a linear flow on the torus with a Diophantine frequency vector

A. V. Rozhdestvenskii

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: For a 1-periodic function $f$ of finite smoothness and a Diophantine vector $\alpha$ the solubility problem is studied for the additive cohomological equation on the torus
$$ w(T_\alpha x)-w(x)=f(x)-\int_{\mathbb T^d}f(t)\,dt, $$
where $T_\alpha x=x+\alpha\pmod1$ is the shift of the torus $\mathbb T^d$ by the vector $\alpha$ and $w$ is an unknown measurable function.
Necessary and sufficient conditions are obtained for the conjugacy of a linear flow on the $(d+1)$-torus to the reparametrized flow
$$ \begin{cases} \dot x=\dfrac\alpha{F(x,y)}\,,\\ \dot y=\dfrac1{F(x,y)}\,, \end{cases} $$
where $F(x,y)$ is a positive 1-periodic function of finite smoothness.

UDC: 517.9

MSC: Primary 37A30, 37A35; Secondary 46E35

Received: 05.11.2003

DOI: 10.4213/sm824


 English version:
Sbornik: Mathematics, 2004, 195:5, 723–764

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025