RUS  ENG
Full version
JOURNALS // Matematicheskii Sbornik // Archive

Mat. Sb., 2004 Volume 195, Number 7, Pages 127–160 (Mi sm837)

This article is cited in 9 papers

Birationally rigid varieties with a pencil of double Fano covers. I

A. V. Pukhlikov

Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: The general Fano fibration $\pi\colon V\to\mathbb P^1$ the fibre of which is a double Fano hypersurface of index 1 is proved to be birationally superrigid, provided it is sufficiently twisted over the base. In particular, there exist on $V$ no other structures of a rationally convex fibration. The proof is based on the method of maximal singularities.

UDC: 513.6

MSC: 14E05, 14J45

Received: 07.10.2003

DOI: 10.4213/sm837


 English version:
Sbornik: Mathematics, 2004, 195:7, 1039–1071

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025