RUS  ENG
Полная версия
ЖУРНАЛЫ // Electronic Research Announcements in Mathematical Sciences // Архив

Electron. Res. Announc. Math. Sci., 2013, том 20, страницы 12–30 (Mi erams1)

Эта публикация цитируется в 9 статьях



[Infinite determinantal measures]

A. I. Bufetovabcdef

a The Steklov Institute of Mathematics, Moscow, Russia
b The Institute for Information Transmission Problems, Moscow, Russia
c The Independent University of Moscow, Russia
d Rice University, Houston, Texas, USA
e National Research University Higher School of Economics, Moscow, Russia
f Laboratoire d’Analyse, Topologie, Probabilités, Aix-Marseille Université, CNRS, Marseille, France

Аннотация: Infinite determinantal measures introduced in this note are inductive limits of determinantal measures on an exhausting family of subsets of the phase space. Alternatively, an infinite determinantal measure can be described as a product of a determinantal point process and a convergent, but not integrable, multiplicative functional.
Theorem 4.1, the main result announced in this note, gives an explicit description for the ergodic decomposition of infinite Pickrell measures on the spaces of infinite complex matrices in terms of infinite determinantal measures obtained by finite-rank perturbations of Bessel point processes.

MSC: Primary 60G60; Secondary 37A15

Поступила в редакцию: 29.07.2012
Исправленный вариант: 26.11.2012

Язык публикации: английский

DOI: 10.3934/era.2013.20.12



Реферативные базы данных:


© МИАН, 2025