Аннотация:
В статье решена известная проблема Дубровина–Новикова, поставленная еще в 1984 г. в связи с гамильтоновой теорией систем гидродинамического типа, — проблема классификации многомерных скобок Пуассона гидродинамического типа. В отличие от одномерного случая в общем случае невырожденные многомерные скобки Пуассона гидродинамического типа нельзя привести к постоянному виду локальными заменами координат, они порождаются, вообще говоря, нетривиальными каноническими специальными бесконечномерными алгебрами Ли. В данной работе дифференциально-геометрическими методами получена классификация всех неособых невырожденных многомерных скобок Пуассона гидродинамического типа для любого числа компонент $N$ и для любой размерности $n$. Ключевую роль в решении этой задачи сыграла теория согласованных метрик, построенная ранее автором. Библ. 20.
Ключевые слова:Многомерная скобка Дубровина–Новикова, многомерная скобка Пуассона гидродинамического типа, тензорные препятствия, бесконечномерные алгебры Ли, согласованные метрики, плоские пучки метрик, система гидродинамического типа, согласованные скобки Пуассона.