Аннотация:
Э. Майкл и И. Намиока доказали следующую теорему. Пусть $Y$ – выпуклое $G_\delta$-подмножество банахова пространства $E$, удовлетворяющего такому условию: если $K\subset Y$ — компакт, то его замкнутая (в $Y$) выпуклая оболочка — тоже компакт. Тогда всякое полунепрерывное снизу многозначное отображение паракомпакта $X$ в $Y$ с выпуклыми замкнутыми в $Y$ значениями обладает непрерывной селекцией. Майкл сформулировал вопрос, существенно ли в предположении теоремы условие $G_\delta$ на множество $Y$.
В этой заметке мы даем положительный ответ на последний вопрос. Построение соответствующего примера опирается на исследование топологических свойств выпуклых оболочек некоторых компактных множеств вероятностных мер на отрезке.