Аннотация:
Отображение $f_{op}\colon(A_1,\dots,A_n)\mapsto f(A_1,\dots,A_n)$, определяемое липшицевой функцией
$n$ переменных $f(t_1,\dots,t_n)$ на совокупности коммутативных наборов из $n$ самосопряженных
операторов в гильбертовом пространстве, является липшицевым относительно нормы любого идеала Шэттена $\mathcal{S}^p$, $p\in(1;\infty)$. Указаны применения к функциональному исчислению от нормальных операторов и от сжатий. Далее, при $n=1$, если $f$ липшицева, отображение $f_{op}$ сохраняет области определения замкнутых дифференцирований со значениями в $\mathcal{S}^p$. Наконец, $f_{op}$ дифференцируемо по Фреше, если $f$ непрерывно дифференцируема.
Ключевые слова:функции от операторов, операторная липшицевость, классы Шэттена, неограниченные дифференцирования.