Аннотация:
Используя мероморфные дифференциалы с вещественными периодами, мы доказываем гипотезу Арбарелло: любой компактный комплексный цикл в пространстве модулей $\mathcal{M}_g$ гладких алгебраических кривых рода $g$, размерность которого не меньше $g-n$, пересекает множество кривых, на которых существует точка Вейерштрасса порядка, не превосходящего $n$.
Ключевые слова:модули алгебраических кривых, интегрируемые системы, вещественно-нормированные дифференциалы.