Аннотация:
Рассматривается пространство $A(\mathbb T)$ непрерывных функций $f$ на окружности $\mathbb T$, таких, что последовательность коэффициентов Фурье $\widehat{f}=\{\widehat{f}(k),\,k\in\mathbb Z\}$ принадлежит $l^1(\mathbb Z)$. Норма в $A(\mathbb T)$ определяется соотношением $\|f\|_{A(\mathbb T)}=\|\widehat{f}\|_{l^1(\mathbb Z)}$. Согласно известной теореме Берлинга–Хелсона, если $\varphi\colon\mathbb T\to\mathbb T$ — непрерывное отображение, такое, что $\|e^{in\varphi}\|_{A(\mathbb T)}=O(1)$, $n\in\mathbb Z$, то $\varphi$ линейно. Кахану принадлежит гипотеза о том, что то же заключение относительно $\varphi$ верно в предположении, что $\|e^{in\varphi}\|_{A(\mathbb T)}=o(\log |n|)$. В работе показано, что если $\|e^{in\varphi}\|_{A(\mathbb T)}=o((\log\log |n|/\log\log\log |n|)^{1/12})$, то $\varphi$ линейно.
Ключевые слова:абсолютно сходящиеся ряды Фурье, теорема Берлинга–Хелсона.