Аннотация:
Пусть $\Omega$ — ограниченная липшицева область в $\mathbb{R}^n$, $n\ge2$, и пусть в ней задан матричный сильно эллиптический оператор $L$$2$-го порядка, записанный в дивергентной форме. Обширная литература посвящена изучению областей определения дробных степеней операторов, отвечающих задачам для уравнения $Lu=f$, прежде всего Дирихле и Неймана, c однородными граничными условиями, включая решение проблемы Като, возникшей в 1961 г. Охвачены также смешанные задачи и некоторый класс задач для систем высших порядков.
Мы предлагаем новый абстрактный подход к этой проблематике, позволяющий существенно проще и единым образом получить наиболее важные, с нашей точки зрения, результаты и охватить новые операторы — классические граничные операторы на липшицевой границе $\Gamma$ области $\Omega$ или ее части. Для этого мы одновременно рассматриваем два хорошо известных оператора, сопоставляемых граничной задаче.
Ключевые слова:липшицева область, сильно эллиптическая система, коэрцитивная задача, проблема Като.