Аннотация:
Классическая теорема Лузина утверждает, что измеримая функция одной переменной «почти» непрерывна. Для измеримых функций нескольких переменных это уже не так. Поиск правильного аналога
этой теоремы приводит к понятию виртуально непрерывных функций нескольких переменных. Это, по-видимому, новое понятие неявно присутствует в утверждениях типа теорем вложения и теорем о следах для пространств Соболева и фактически вскрывает их природу как теорем о виртуальной непрерывности. Особенно полезно это понятие при исследовании и классификации измеримых функций, а также в ряде вопросов теории динамических систем, теории полиморфизмов и бистохастических мер. В этой работе мы напоминаем необходимые определение и свойства допустимых метрик, приводим определение виртуальной непрерывности и формулируем некоторые его приложения, оставляя более подробный анализ для другой статьи.
Ключевые слова:допустимая метрика, виртуальная непрерывность, функция многих переменных, полиморфизм, теорема о следе.