Аннотация:
Мы расширяем классическую конструкцию операторных узлов и характеристических функций. Рассмотрим группу $G$ унитарных блочных матриц размера $\alpha+\infty+\dots+\infty$ ($m$ раз) и ее подгруппу $K\cong{\mathrm U}(\infty)$, состоящую из блочно-унитарных матриц (с единичным блоком размера $\alpha$ и матрицей $u\in{\mathrm U}(\infty)$, повторенной $m$ раз). Оказывается, что существует естественное умножение на пространстве классов сопряженности $G/\kern-2pt/K$. Мы строим «спектральные данные» класса сопряженности, которые визуализируют умножение и достаточны для разделения классов.