Аннотация:
Пусть $G$ — связная редуктивная алгебраическая группа над полем $\mathbb{C}$. Пусть $\Lambda^{+}_{G}$ — моноид доминантных весов группы $G$. Мы строим интегрируемые кристаллы $\mathbf{B}^{G}(\lambda)$, $\lambda\in\Lambda^+_G$,
используя геометрию обобщенных срезов в аффинном грассманиане двойственной к $G$ по Ленглендсу группы. Мы также строим морфизмы тензорного произведения $\mathbf{p}_{\lambda_{1},\lambda_{2}}\colon\mathbf{B}^{G}(\lambda_1)\otimes\mathbf{B}^{G}(\lambda_2) \to\mathbf{B}^{G}(\lambda_{1}+\lambda_{2})\cup\{0\}$, используя умножение в обобщенных срезах. Пусть $L \subset G$ — подгруппа Леви в $G$. Мы описываем функтор $\operatorname{Res}^G_L\colon\operatorname{Rep}(G)\to\operatorname{Rep}(L)$ ограничения на $L$ в терминах функторов гиперболических ограничений для обобщенных срезов.