Аннотация:
В первой части настоящей работы доказано, что ферми-кривая двумерного периодического оператора Шрёдингера с положительным потенциалом, точки которой параметризуют блоховские решения уравнения Шрёдингера на нулевом уровне энергии, является гладкой $M$-кривой. Кроме того, полюсы блоховских решений расположены по одному на каждом из неподвижных овалов некоторой антиголоморфной инволюции. При деформации потенциала топологический тип устойчив до тех пор, пока при каком-то значении параметра деформации для соответствующего потенциала нулевой уровень энергии не становится собственным в пространстве (анти)периодических функций. Вторая часть работы посвящена построению таких потенциалов с помощью обобщения конструкции Новикова–Веселова.
Ключевые слова:спектральная теория периодических дифференциальных операторов, ферми-поверхность, функции Бейкера–Ахиезера, $M$-кривые.