RUS  ENG
Полная версия
ЖУРНАЛЫ // Функциональный анализ и его приложения // Архив

Функц. анализ и его прил., 2020, том 54, выпуск 1, страницы 87–92 (Mi faa3694)

Эта публикация цитируется в 6 статьях

Краткие сообщения

Об усреднении локально периодических эллиптических и параболических операторов

Н. Н. Сеник

Санкт-Петербургский государственный университет, Санкт-Петербург, Россия

Аннотация: Пусть $\Omega$ — ограниченная область в $\mathbb{R}^{d}$ с границей класса $C^{1,s}$ ($s>1/2$), и пусть $\mathcal A^\varepsilon=-\operatorname{div}A(x,x/\varepsilon)\nabla$ — матричный эллиптический оператор в $\Omega$ с граничным условием Дирихле. Мы предполагаем, что $\varepsilon$ мало, а функция $A$ липшицева по первому аргументу и периодическая по второму, так что коэффициенты оператора $\mathcal A^\varepsilon$ оказываются локально периодическими. Нас интересует погрешность приближений при $\varepsilon\to0$ для $(\mathcal A^\varepsilon-\mu\rho^\varepsilon)^{-1}$ и $\nabla(\mathcal A^\varepsilon-\mu\rho^\varepsilon)^{-1}$ в операторной топологии на $L_2$, когда $\mu$ находится в резольвентном множестве. Здесь $\rho^\varepsilon(x)=\rho(x,x/\varepsilon)$ — положительно определенная локально периодическая функция, причем $\rho$ удовлетворяет тем же условиям, что и $A$. Отследив зависимость погрешностей от параметров $\varepsilon$ и $\mu$, мы затем переходим к аналогичным вопросам, связанным с начально-краевой задачей для параболического уравнения $\rho^\varepsilon \partial_t v_\varepsilon=-\mathcal A^\varepsilon v_\varepsilon$.

Ключевые слова: теория усреднения, операторные оценки погрешности, локально периодические операторы, эллиптические системы, параболические системы.

УДК: 517.956.2

Поступило в редакцию: 13.05.2019
Исправленный вариант: 13.06.2019
Принята в печать: 15.06.2019

DOI: 10.4213/faa3694


 Англоязычная версия: Functional Analysis and Its Applications, 2020, 54:1, 68–72

Реферативные базы данных:


© МИАН, 2024