Аннотация:
В сепарабельном банаховом пространстве рассматривается дифференциальное включение, правая часть которого является суммой двух многозначных отображений. Значениями первого являются замкнутые ограниченные не обязательно выпуклые множества, и оно является липшицевым по фазовой переменной. Значениями второго отображения являются замкнутые множества, и оно обладает смешанными условиями полунепрерывности: либо в фазовой точке отображение имеет замкнутый график и его значением является выпуклое множество, либо в некоторой окрестности этой точки оно является полунепрерывным снизу. При дополнительных предположениях, связанных с измеримостью и условиями роста, доказана теорема существования решения.