Аннотация:
Ортогональные полиномы $P_{n}(\lambda)$ являются осциллирующими функциями от $n$ при $n\to\infty$ для $\lambda$ из абсолютно непрерывного спектра соответствующего оператора Якоби $J$. Мы показываем, что, независимо от конкретных предположений о коэффициентах оператора $J$, амплитуда и фаза в асимптотических формулах для $P_{n}(\lambda)$ связаны найденными в работе универсальными соотношениями. Доказательства этих соотношений основаны на изучении зависящей от времени эволюции, порождаемой подходящими функциями оператора $J$.