Аннотация:
В статье изучаются соотношения между некоторыми топологическими и аналитическими инвариантами нульмерных ростков, или кратных точек. Среди прочего показано, что не существует жестких нульмерных особенностей Горенштейна и жестких почти полных пересечений. В доказательстве первого результата используется каноническая двойственность между гомологиями и когомологиями кокасательного комплекса, а в доказательстве второго применяется новый метод, основанный на использовании свойств функтора кручения. Кроме того, получены эффективные оценки для размерности пространств первых нижних и верхних кокасательных функторов произвольных нульмерных особенностей, включая пространство дифференцирований. Рассмотрены примеры несглаживаемых нульмерных неполных пересечений, обсуждаются некоторые свойства и способы построения таких особенностей с помощью теории модулярных деформаций, а также ряд других приложений.