RUS  ENG
Полная версия
ЖУРНАЛЫ // Функциональный анализ и его приложения // Архив

Функц. анализ и его прил., 2021, том 55, выпуск 3, страницы 3–25 (Mi faa3915)

Эта публикация цитируется в 2 статьях

Гиперэллиптические сигма-функции и полиномы Адлера–Мозера

В. М. Бухштабер, Е. Ю. Бунькова

Математический институт им. В. А. Стеклова Российской академии наук, Москва, Россия

Аннотация: В работе В. М. Бухштабера и Д. В. Лейкина, опубликованной в 2004 г. в журнале «Функциональный анализ и его приложения», для каждого $g>0$ была построена система из $2g$ многомерных уравнений теплопроводности в неголономном репере. Сигма-функция универсальной гиперэллиптической кривой рода $g$ является решением этой системы. В нашей предыдущей работе, опубликованной в журнале «Функциональный анализ и его приложения», были получены явные выражения для операторов Шрёдингера, определяющих уравнения рассматриваемой системы в гиперэллиптическом случае.
В данной работе на основе этих результатов показано, что если начальное условие является полиномом, то решение рассматриваемой системы определено однозначно с точностью до постоянного множителя. Это находит важные приложения в широко известной задаче разложения в ряд гиперэллиптической сигма-функции. Дано явное описание связи таких решений с известными полиномами Бурхналла–Чаунди и Адлера–Мозера. Найдена система линейных дифференциальных уравнений второго порядка, определяющая соответствующий полином Адлера–Мозера.

Ключевые слова: оператор Шрёдингера, полиномиальная алгебра Ли, полиномиальная динамическая система, уравнение теплопроводности в неголономном репере, дифференцирование абелевых функций по параметрам, полином Адлера–Мозера, уравнение Бурхналла–Чаунди, уравнение Кортевега–де Фриза.

УДК: 515.178.2+517.958

Поступило в редакцию: 18.06.2021
Исправленный вариант: 18.06.2021
Принята в печать: 21.06.2021

DOI: 10.4213/faa3915


 Англоязычная версия: Functional Analysis and Its Applications, 2021, 55:3, 179–197

Реферативные базы данных:


© МИАН, 2024