Аннотация:
Мы доказываем ограниченную обратную теорему об абстрактных простых числах для арифметической полугруппы с полиномиальным ростом считающей функции абстрактных простых чисел. Прилагательное «ограниченная» означает, что рассматривается считающая функция абстрактных целых чисел степени $\le t$, разложение которых на простые множители может содержать только первые $k$ абстрактных простых чисел (упорядоченных в порядке неубывания степени). Теорема дает асимптотику этой считающей функции при $t,k\to\infty$. Изучение обсуждаемой асимптотики мотивировано двумя возможными приложениями из математической физики: вычислением энтропии обобщений бозе-газа и изучением статистики распространения узких волновых пакетов на метрических графах.