RUS  ENG
Полная версия
ЖУРНАЛЫ // Функциональный анализ и его приложения // Архив

Функц. анализ и его прил., 2023, том 57, выпуск Suppl. 1, страницы S17–S25 (Mi faa4101)

Статьи, опубликованные в английской версии журнала

Spectral Inclusion Properties of Quaternionic Krein Space Numerical Range

Kamel Mahfoudhi

Computer Science Department, Higher Institute of Applied Sciences and Technology, University of Sousse, Sousse, Tunisia

Аннотация: The article provides a concise overview of key concepts related to right quaternionic linear operators, quaternionic Hilbert spaces, and quaternionic Krein spaces. It then delves into the study of the quaternionic Krein space numerical range of a bounded right linear operator and the relationship between this numerical range and the $S$-spectrum of the operator. The article concludes by establishing spectral inclusion results based on the quaternionic Krein space numerical range and presenting the corresponding spectral inclusion theorems. In addition, we generalize some results to infinite dimensional quaternionic Krein spaces and give some examples.

Ключевые слова: quaternions, quaternionic Hilbert space, quaternionic Krein spaces, numerical range, quaternionic Krein space numerical range.

Поступило в редакцию: 27.02.2023
Исправленный вариант: 04.11.2023
Принята в печать: 14.11.2023

Язык публикации: английский

DOI: 10.1134/S0016266323050027


 Англоязычная версия: Functional Analysis and Its Applications, 2023, 57:S1, S17–S25


© МИАН, 2024