Аннотация:
В ограниченной области пространства $\mathbb{R}^n$ с липшицевой границей рассматривается сильно эллиптическая система 2-го порядка с
симметричной старшей частью, записанной в дивергентной форме. Изучается задача Неймана в обобщенной вариационной (или слабой) постановке с использованием пространств Лебега $H^\sigma_p(\Omega)$ для решений, где $p$ не обязательно равно $2$ и $\sigma$ не обязательно равно $1$. Используя средства теории интерполяции, мы обобщаем известную теорему о регулярности решений, в которой $p=2$ и $|\sigma-1|<1/2$, и связанную с ней теорему об однозначной разрешимости этой задачи (Саваре, 1998) на $p$, близкие к $2$. Проводится сравнение этого подхода с невариационным подходом, принятым в многочисленных работах современной теории граничных задач в липшицевых областях. Обсуждается регулярность собственных
функций спектральных задач Неймана, Дирихле и Пуанкаре–Стеклова.
Ключевые слова:сильно эллиптическая система 2-го порядка, задачи Дирихле, Неймана и Пуанкаре–Стеклова, вариационные решения, регулярность решений, пространства Лебега–Лиувилля и Бесова, регулярность собственных функций.