RUS  ENG
Полная версия
ЖУРНАЛЫ // Foundations of Computational Mathematics. The Journal of the Society for the Foundations of Computational Mathematics // Архив

Found. Comput. Math., 2020, том 20, страницы 753–781 (Mi fcm1)

Эта публикация цитируется в 4 статьях



[Tropical Combinatorial Nullstellensatz and sparse polynomials]

Dima Grigorieva, Vladimir V. Podolskiibc

a CNRS, Mathématiques, Université de Lille, 59655 Villeneuve d'Ascq, France
b National Research University Higher School of Economics, Moscow, Russia
c Steklov Mathematical Institute, 8 Gubkina St., Moscow, Russia 119991

Аннотация: Tropical algebra emerges in many fields of mathematics such as algebraic geometry, mathematical physics and combinatorial optimization. In part, its importance is related to the fact that it makes various parameters of mathematical objects computationally accessible. Tropical polynomials play a fundamental role in this, especially for the case of algebraic geometry. On the other hand, many algebraic questions behind tropical polynomials remain open. In this paper, we address four basic questions on tropical polynomials closely related to their computational properties: In the classical algebra well-known results in the direction of these questions are Combinatorial Nullstellensatz due to N. Alon, J. Schwartz–R. Zippel Lemma and Universal Testing Set for sparse polynomials, respectively. The classical analog of the last question is known as $\tau$-conjecture due to M. Shub–S. Smale. In this paper, we provide results on these four questions for tropical polynomials.

MSC: 68R05, 68W30, 14T05

Поступила в редакцию: 25.01.2018
Исправленный вариант: 10.01.2019
Принята в печать: 05.06.2019

Язык публикации: английский

DOI: 10.1007/s10208-019-09431-1



Реферативные базы данных:


© МИАН, 2024