RUS  ENG
Полная версия
ЖУРНАЛЫ // Фундаментальная и прикладная математика // Архив

Фундамент. и прикл. матем., 2009, том 15, выпуск 1, страницы 157–173 (Mi fpm1210)

Эта публикация цитируется в 2 статьях

Специальные классы $l$-колец

Н. Е. Шавгулидзе

Московский государственный университет им. М. В. Ломоносова

Аннотация: В работе изучаются специальные классы решёточно упорядоченных колец и специальные радикалы. Специальный радикал представляется в виде пересечения правых $l$-первичных $l$-идеалов, таких что фактор-кольцо по наибольшему $l$-идеалу, содержащемуся в данном правом $l$-идеале, принадлежит специальному классу. Первичный радикал $l$-кольца представляется в виде пересечения всех правых $l$-полупервичных $l$-идеалов. Вводится понятие вполне $l$-первичного правого $l$-идеала и доказывается, что специальный радикал $l$-кольца $N_3(R)$, определяемый классом всех $l$-колец без положительных делителей нуля, представляется в виде пересечения всех правых вполне $l$-первичных $l$-идеалов $l$-кольца $R$.

Ключевые слова: решёточно упорядоченное кольцо, $l$-первичный правый $l$-идеал, $l$-полупервичный правый $l$-идеал, радикал $l$-кольца, специальный класс $l$-колец, специальный радикал, первичный радикал $l$-кольца, класс $l$-колец без положительных делителей нуля, вполне $l$-первичный правый $l$-идеал.

УДК: 512.555.4


 Англоязычная версия: Journal of Mathematical Sciences (New York), 2010, 166:6, 794–805

Реферативные базы данных:


© МИАН, 2024