Фундамент. и прикл. матем.,
2013, том 18, выпуск 4,страницы 155–184(Mi fpm1536)
Продолжение эндоморфизмов полугруппы $\mathrm{GE}^+_2(R)$ до эндоморфизмов $\mathrm{GE}^+_2(R[x])$ для решёточно-упорядоченного коммутативного кольца $R$ с единицей без делителей нуля
Аннотация:
Пусть $R$ – решёточно-упорядоченное коммутативное кольцо без делителей нуля, $\mathrm G_n(R)$ – подполугруппа группы $\mathrm{GL}_n(R)$, состоящая из матриц с неотрицательными коэффициентами, $\mathrm{GE}^+_n(R)$ – её подполугруппа, построенная с помощью матриц элементарных преобразований, диагональных матриц и матриц перестановок. В работе описано, при каких условиях можно продолжить произвольный эндоморфизм с $\mathrm{GE}^+_2(R)$ до $\mathrm{GE}^+_2(R[x])$.