RUS  ENG
Полная версия
ЖУРНАЛЫ // Фундаментальная и прикладная математика // Архив

Фундамент. и прикл. матем., 2007, том 13, выпуск 2, страницы 3–29 (Mi fpm16)

Эта публикация цитируется в 2 статьях

Проблема Куроша, теорема о высоте, нильпотентность радикала и тождество алгебраичности

А. Я. Беловab

a Московский институт открытого образования
b Hebrew University of Jerusalem

Аннотация: Работа посвящена взаимосвязи между проблемой Куроша и теоремой Ширшова о высоте. В центре внимания находится тождество алгебраичности, с помощью которого и получаются основные результаты, например прямое комбинаторное доказательство теоремы о нильпотентности радикала вместе с явными оценками на индекс нильпотентности. Доказано, что если $A$ — конечно порождённая PI-алгебра, $Y$ — её конечное подмножество и для любого ассоциативно-коммутативного кольца $R\supset\mathbb F$ любой фактор тензорного произведения $R\otimes A$, для которого все проекции элементов из $Y$ алгебраичны, является конечномерной $R$-алгеброй, то $A$ имеет ограниченную существенную высоту над $Y$. Если же, кроме того, $Y$ порождает $A$ как алгебру, то $A$ имеет ограниченную высоту над $Y$ в смысле Ширшова.
Кроме того, работа содержит доказательство теоремы Размыслова–Кемера–Брауна о нильпотентности радикала конечно порождённой PI-алгебры, отличное от первоначального. Доказательство позволяет получить конструктивные оценки.
Главной целью данной работы является развитие техники, связанной с тождеством алгебраичности, а также развитие своего рода “операционного исчисления” для операторов, связанных с символьными выражениями в PI-алгебрах (операторов “переноса” и “вставки”).

Ключевые слова: полиномиальное тождество, проблема Куроша, высота, тождество Капелли, тождество алгебраичности.

УДК: 512.552.4+512.554.32+512.664.2


 Англоязычная версия: Journal of Mathematical Sciences (New York), 2008, 154:2, 125–142

Реферативные базы данных:


© МИАН, 2024