RUS  ENG
Полная версия
ЖУРНАЛЫ // Фундаментальная и прикладная математика // Архив

Фундамент. и прикл. матем., 2019, том 22, выпуск 4, страницы 75–100 (Mi fpm1817)

Эта публикация цитируется в 1 статье

Алгебраическая геометрия над алгебраическими системами. VIII. Геометрические эквивалентности и особые классы алгебраических систем

Э. Ю. Данияроваa, А. Г. Мясниковb, В. Н. Ремесленниковa

a Институт математики им. С. Л. Соболева СО РАН
b Технологический институт Стивенса, США

Аннотация: Статья продолжает цикл работ по алгебраической геометрии над произвольными алгебраическими системами. В ней исследуются семь эквивалентностей, а именно геометрическая, универсальная геометрическая, квазиэквациональная, универсальная, элементарная эквивалентность и их комбинации, в особых классах алгебраических систем (нётеровых по уравнениям, $\mathrm{q}_\omega$-компактных, $\mathrm{u}_\omega$-компактных, эквациональных областей, эквациональных кообластей и др.). Основные вопросы: 1) какие эквивалентности внутри данного класса $\mathbf K$ совпадают, какие разнятся? 2) относительно каких эквивалентностей данный класс $\mathbf K$ инвариантен, относительно каких нет?

Ключевые слова: универсальная алгебраическая геометрия, алгебраическая система, геометрическая эквивалентность, универсальная геометрическая эквивалентность, квазиэквациональная эквивалентность, универсальная эквивалентность, элементарная эквивалентность, нётеровость по уравнениям, $\mathrm{q}_\omega$-компактность, $\mathrm{u}_\omega$-компактность, эквациональная область, эквациональная кообласть.

УДК: 510.67+512.71


 Англоязычная версия: Journal of Mathematical Sciences (New York), 2021, 257:6, 797–813


© МИАН, 2024