Аннотация:
В статье доказано, что в определенном статистическом смысле почти в каждой группе с $m$ порождающими и $n$ соотношениями ($m$ и $n$ фиксированы) любая $\le L$-порожденная подгруппа бесконечного индекса свободна ($L$ — произвольная наперед заданная граница, возможно, $L\gg m$), а все подгруппы конечных индексов несвободны. Для доказательства найдено условие на определяющие соотношения, при котором в конечно определенной группе подгруппы бесконечного индекса с заданным числом порождающих свободны. Это условие формулируется при помощи конечных размеченных графов.
Ключевые слова:комбинаторная теория групп, группы с условием малого сокращения, графы.