RUS  ENG
Полная версия
ЖУРНАЛЫ // Фундаментальная и прикладная математика // Архив

Фундамент. и прикл. матем., 2000, том 6, выпуск 3, страницы 649–668 (Mi fpm496)

Эта публикация цитируется в 1 статье

Экспоненциальные диофантовы уравнения в кольцаx положительной характеристики

А. Я. Беловa, А. А. Чиликовb

a Дом научно-технического творчества молодежи
b Московский государственный университет им. М. В. Ломоносова

Аннотация: В данной работе доказана алгоритмическая разрешимость экспоненциально-диофантовых уравнений в кольцах, представимых матрицами над полем положительной характеристики. Рассмотрим систему экспоненциально-диофантовых уравнений:
$$ \sum_{i=1}^{s}P_{ij}(n_1,\ldots,n_t)b_{ij0}a_{ij1}^{n_1}b_{ij1}\ldots a_{ijt}^{n_t}b_{ijt}=0, $$
где $b_{ijk},a_{ijk}$ — константы из матричного кольца характеристики $p$, $n_i$ — неизвестные. Каждому решению $\langle n_1,\ldots,n_t \rangle$ системы сопоставим слово над алфавитом из $p^t$ букв $\overline\alpha_0\ldots\overline\alpha_q$, где $\overline\alpha_i$ — $\langle n_1^{(i)},\ldots,n_t^{(i)} \rangle$, $n^{(i)}$ — $i$-я цифра в $p$-ичной записи числа $n$. Основной результат работы заключается в следующем: множество слов, отвечающих решениям системы экспоненциально-диофантовых уравнений, является регулярным языком (т. е. представимо конечным автоматом). Существует эффективный алгоритм, позволяющий вычислить этот язык.

Ключевые слова: конечные автоматы, регулярные языки.

УДК: 512.5+511

Поступила в редакцию: 01.03.1998



Реферативные базы данных:


© МИАН, 2024