Аннотация:
В данной работе доказана алгоритмическая разрешимость экспоненциально-диофантовых уравнений в кольцах, представимых матрицами над полем положительной характеристики. Рассмотрим систему экспоненциально-диофантовых уравнений:
$$
\sum_{i=1}^{s}P_{ij}(n_1,\ldots,n_t)b_{ij0}a_{ij1}^{n_1}b_{ij1}\ldots a_{ijt}^{n_t}b_{ijt}=0,
$$
где $b_{ijk},a_{ijk}$ — константы из матричного кольца характеристики $p$, $n_i$ — неизвестные. Каждому решению $\langle n_1,\ldots,n_t \rangle$ системы сопоставим слово над алфавитом из $p^t$ букв $\overline\alpha_0\ldots\overline\alpha_q$, где $\overline\alpha_i$ — $\langle n_1^{(i)},\ldots,n_t^{(i)} \rangle$, $n^{(i)}$ — $i$-я цифра в $p$-ичной записи числа $n$. Основной результат работы заключается в следующем: множество слов, отвечающих решениям системы экспоненциально-диофантовых уравнений, является регулярным языком (т. е. представимо конечным автоматом). Существует эффективный алгоритм, позволяющий вычислить этот язык.