Аннотация:
Данная работа посвящена доказательству теоремы Нагаты–Хигмана для полуколец (вообще говоря, с некоммутативным сложением). Основные результаты работы заключаются в следующем:
Теорема. Пусть $A$ — $l$-порожденное полукольцо (с коммутативным сложением), в котором выполняется тождество $x^{m}=0$. Тогда $A$ нильпотентна степени не выше $2l^{m+1}m^{3}$.
Теорема Нагаты–Хигмана для полуколец общего вида. Если в $l$-порожденном полукольце выполнено тождество $x^{m}=0$, то любое слово длины большей $m^{m}\cdot2l^{m+1}m^{3}+ m$ равно нулю.