Аннотация:
Кольцо имеет свойство Крулля–Шмидта, если любой конечно представимый модуль над ним разлагается в прямую сумму модулей с локальными кольцами эндоморфизмов. Описаны полуцепные кольца Крулля–Шмидта как полуцепные кольца со слабым условием типа инвариантности. Существенно упрощена классификация неразложимых чисто-инъективных модулей над цепным полуинвариантным кольцом, и дан критерий существования суперразложимого чисто-инъективного модуля. Показано, что над эффективно заданным цепным инвариантным кольцом с бесконечным телом вычетов теория всех модулей разрешима, если вопрос об обратимости элемента кольца может быть эффективно решен.