Аннотация:
Решение задачи Коши–Дирихле представлено в виде предела последовательности интегралов по конечным декартовым степеням рассматриваемой области многообразия. Показано, что эти пределы совпадают с интегралами по поверхностным мерам гауссовского типа на множестве траекторий в многообразии. При этом подынтегральные выражения представляют собой комбинацию элементарных функций от коэффициентов уравнения и геометрических характеристик многообразия. Также решение краевой задачи Коши–Дирихле в данной области многообразия представлено как предел решения задачи Коши для уравнения теплопроводности на всём многообразии при неограниченном возрастании абсолютной величины потенциала вне области. В доказательстве используются некоторые асимптотические оценки гауссовских интегралов по римановым многообразиям и теорема Чернова.