RUS  ENG
Полная версия
ЖУРНАЛЫ // Фундаментальная и прикладная математика // Архив

Фундамент. и прикл. матем., 2006, том 12, выпуск 6, страницы 193–211 (Mi fpm996)

Эта публикация цитируется в 7 статьях

Мера Пуассона–Маслова и формулы Фейнмана для решения уравнения Дирака

Н. Н. Шамаров

Московский государственный университет им. М. В. Ломоносова

Аннотация: Метод, использованный В. П. Масловым для представления решения начальной задачи для классического уравнения Шрёдингера и допускающий применение к уравнению Дирака, включает в качестве основного шага построение цилиндрической счётно-аддитивной меры (являющейся аналогом пуассоновского распределения) на некотором пространстве функций (= траекторий в импульсном пространстве), преобразование Фурье которой совпадает с множителем в формуле для представления решения уравнения Шрёдингера интегралом по так называемой цилиндрической (псевдо)мере Фейнмана (в пространстве траекторий в конфигурационном пространстве классической системы). С другой стороны, в формуле Маслова для решения уравнения Шрёдингера экспоненциальный множитель является (с точностью до сдвига) преобразованием Фурье псевдомеры Фейнмана. В случае уравнения Дирака исторически первыми появились формулы для импульсного представления, использующие счётно-аддитивные функциональные распределения типа меры Пуассона–Маслова, но с некоммутирующими (матричными) значениями. В статье найдены обобщённые меры, преобразование Фурье которых совпадает с аналогом экспоненциального подынтегрального множителя в формуле типа Маслова для уравнения Дирака и интегралы по которым дают решения задачи Коши для этого уравнения в конфигурационном пространстве.

Ключевые слова: уравнение Дирака для электрона, интегралы Фейнмана, переходные амплитуды, некоммутативные меры Пуассона–Маслова, хронологические интегралы.

УДК: 517.9


 Англоязычная версия: Journal of Mathematical Sciences (New York), 2008, 151:1, 2767–2780

Реферативные базы данных:


© МИАН, 2024