RUS  ENG
Полная версия
ЖУРНАЛЫ // Нечеткие системы и мягкие вычисления // Архив

Нечеткие системы и мягкие вычисления, 2016, том 11, выпуск 2, страницы 95–101 (Mi fssc6)

Improvement of clustering by modification of degrees of fuzziness

B. Venkataramanaa, L. Padmasreeb, M. Srinivasa Raoc, D. Lathad, G. Ganesane

a Holy Mary Institute of Technology, Bogaram, Telangana, India
b VNR Vignana Jyothi Institute of Engineering & Technology, Bachupally, Telangana, India
c Jawaharlal Nehru Technological University, Kukatpally, Telangana, India
d Adikavi Nannaya University, Rajahmundry, Andhra Pradesh, India
e Adikavi Nannaya University, Rajahmundry, Andhra Pradesh, India

Аннотация: Due to fast growth in technology, conventional classification methods are limited in their ability to support medical diagnostics without introducing considerable ambiguities. Since the conditions are vague in medicine the fuzzy methods may be more helpful rather than crisp ones. Classification depends on number of attributes, number of clusters to be classified and index of the clustering algorithm. Because it is not possible to reduce number of attributes and clusters, therefore changing the index value is a choice to improve performance. The objective of this paper is to analyze the improvement in terms of number of iterations taken, algorithm performance and percentage of correctness of Thyroid samples and wine samples classification by modifying the index of the algorithm.

Ключевые слова: classification, fuzzy clustering, fuzzy c-means, index.

Поступила в редакцию: 18.11.2016
Исправленный вариант: 05.12.2016

Язык публикации: английский



© МИАН, 2024