Аннотация:
Показано, что теорема Имри и Ма, утверждающая, что в пространстве размерности $d<$ 4 введение сколь угодно малой концентрации дефектов типа “случайное локальное поле” в систему с непрерывной симметрией $n$-компонентного векторного параметра порядка ($O(n)$-модель) приводит к исчезновению дальнего порядка и появлению неоднородного состояния, несправедлива, если анизотропное распределение направлений случайных локальных полей дефектов в пространстве параметра порядка создает эффективную анизотропию типа “легкая ось”. В случае слабо анизотропного распределения полей в пространстве размерности 2 $\le d<$ 4 существует критическая концентрация дефектов, при превышении которой неоднородное состояние Имри–Ма может существовать как равновесное. При меньшей концентрации дефектов в системе имеет место дальний порядок. В случае сильно анизотропного распределения полей состояние Имри–Ма полностью подавляется, и состояние с дальним порядком реализуется при любой концентрации дефектов.