Аннотация:
Решается задача отбора признаков при восстановлении линейной регрессии. Принята гипотеза о нормальном распределении вектора зависимой переменной и параметров модели. Для оценки ковариационной матрицы параметров используется аппроксимация Лапласа: логарифм функции ошибки приближается функцией плотности нормального распределения. Исследуется проблема присутствия в выборке шумовых и коррелирующих признаков, так как при их наличии матрица ковариаций параметров модели становится вырожденной. Предлагается алгоритм, производящий отбор информативных признаков. В вычислительном эксперименте приводятся результаты исследования на временно́м ряде.
Ключевые слова:байесовский вывод; ковариационная матрица; гиперпараметры модели; отбор признаков; регрессия.