RUS  ENG
Полная версия
ЖУРНАЛЫ // Информатика и её применения // Архив

Информ. и её примен., 2017, том 11, выпуск 3, страницы 27–33 (Mi ia482)

Эта публикация цитируется в 3 статьях

Обучаемая классификация неполных клинических данных

М. П. Кривенко

Институт проблем информатики Федерального исследовательского центра «Информатика и управление» Российской академии наук

Аннотация: Рассматриваются вопросы эффективности методов классификации неполных клинических данных. Обучение байесовского классификатора проводится методом максимального правдоподобия (МП) для модели смеси нормальных распределений. Строгий вывод формул, обеспечивающих реализацию шагов EM (expectation-maximization) алгоритма, позволил корректно применять итерационный процесс получения оценок параметров смеси. Для неполных данных предлагаются приемы выбора начальных значений и коррекции вырождающихся ковариационных матриц элементов смеси. Экспериментальная часть работы заключалась в анализе зависимости качества классификации от степени пропуска отдельных значений, для этого использовались данные о ферментах, полученные для пациентов с заболеваниями печени. Обработка реальных данных продемонстрировала практически идентичные ошибки классификации при применении простых и сложных методов обработки пропусков в случае невысокой степени случайного пропуска отдельных значений.

Ключевые слова: пропущенные данные; EM-алгоритм; смеси нормальных распределений.

Поступила в редакцию: 14.06.2017

DOI: 10.14357/19922264170303



Реферативные базы данных:


© МИАН, 2024