Аннотация:
Исследуется проблема введения отношения порядка на множестве параметров сложных аппроксимирующих моделей. В качестве параметрических моделей исследуются линейные и нейросетевые модели. Порядок на множестве параметров задается при помощи ковариационной матрицы градиентов функции ошибки по параметрам модели. Предлагается использовать заданный порядок для фиксации параметров модели во время решения оптимизационной задачи. Предполагается, что после небольшого числа итераций алгоритма оптимизации некоторые параметры модели можно зафиксировать без значимой потери качества модели. Это позволит существенно понизить размерность задачи оптимизации. В вычислительном эксперименте сравниваются модели, в которых параметры фиксируются в соответствии с предложенным порядком, с моделями, в которых параметры фиксируются произвольным образом.
Ключевые слова:аппроксимация выборки, линейная модель, нейросеть, выбор модели, функция ошибки.